DfT Safer Roads Fund Slough A4

CONTENTS

1Contents 2
Introduction 3
Work Elements 4
Collision Analysis 4
METHODOLOGY 4
Summary5
Results 5
Section One - M4 Junction 7 Spur Roundabout to A355 Farnham Road 5
Section Two -A355 Farnham Road to A412 Uxbridge Road. 17
Section Three - A355 Uxbridge Road to M4 Junction 5 Roundabout. 30
Road Danger Assessment - IRAP Approach 42
Process 42
Callibration 43
Star Ratings 44
Summary 45
Vehicle users 45
Motorcycles 46
Bicyclists 46
Pedestrians 47
Safer Roads Investment Plan 47
Speed limit reduction 48
Additional countermeasures 48
References 52
Appendix 1: Raw Coding 53
Appendix 2: Countermeasure Costs 54

INTRODUCTION

In 2017 Slough Borough Council (SBC) and Agilysis worked together on a submission to the Department for Transport 'Safer Roads Fund' to improve road safety on the A4 through Slough. This bid was an invitation-only opportunity and was based on previous analysis of risk on 50 selected roads. The project was approved with a value of $£ 1.177 \mathrm{~m}$, originally proposed to take place over two financial years. Funding has been awarded and the project can take place from the $20-21 \mathrm{FY}$. The economic case was based on a benefit-cost ratio (BCR) of 8 .

The headline description of the plan in the approved bid was as follows:
Speed limits will be homogenised to 30 mph along the route with enforcement solutions implemented to achieve compliance with the new limit and existing signals. Roadside hazards will be removed or protection introduced in many places and a limited amount of surface rehabilitation will be required to improve friction at key locations. Locations have been prioritised for countermeasures based on collision histories and potential risk using the IRAP ViDA tool.

Following consultations with SBC it has been identified that in the period since the scheme was designed a number of local and national priorities have changed, and this coupled with a delay in the DfT funding means there is now an opportunity to review the original plans and tailor the scheme to meet the challenges faced in 2021 and beyond.

An outline plan has been discussed for a limited level of support by Agilysis in the implementation of the scheme. This will not be a 'hands-on' role on managing engineering or enforcement schemes, but will provide sufficient support and guidance to assist officers in the successful roll-out of road safety interventions along the route.

This Phase 2 report will outline the process undertaken to assess potential changes and priorities along this route of the A4 through Slough. In this phase we have reviewed original analysis and proposal put forward to the DfT and considered whether changes need to be made to the proposed countermeasures. This reflects any changes to the road, either implemented or planned since the
original proposal, together with any new traffic or speed data. Due to the approach used in the original proposal, which focusses largely on road danger, collision data will not be used as the primary source of information to determine appropriate interventions. However, we recognise that historic collision information provides a complementary perspective and can be valuable in sense-checking some of the subsequent recommendations.

In order to re-analyse the road features in the iRAP ViDA tool ${ }^{1}$, we have commissioned a new video survey and data, with assistance provided from the Road Safety Foundation who are the UK experts in the implementation and training of local authorities in this technique.

We are keen to ensure that any proposed changes do not result in a reduction in the benefit cost ratio $(B C R)$, and safety rating along the $A 4$.

WORK ELEMENTS

As agreed in the original proposal the following work is being undertaken in this phase:

1. Gather information from SBC on any changes to the A4 since the initial analysis period and bid submission
2. Gather information on collisions, traffic volumes and speeds for 2019 compared to 2016 (as used in the submission).
3. Gather information on collisions, traffic volumes and speeds for 2020 compared to 2016 (as used in the submission).
4. Re-enter data to the ViDA software and re-run the user defined intervention plan (UDIP) to consider the original plans, plus any potential changes that will draw a greater benefit and / or reflect the changes identified in Part 1
5. Meet with the SBC team to approve any outline proposals prior to the final plans being calculated
6. Produce a final scheme blueprint for any submission to DfT (if required) and implementation by SBC.

This version of the report contains the elements and results of phases 1-4 and directly informs elements 5 and 6 which will be addressed through a meeting with SBC in April.

COLLISION ANALYSIS

As mentioned above, it is helpful to profile the casualty history. This section analyses the collisions on the A4 in Slough between the M4 Junction 7 spur and the M4 Junction 5. The analysis is divided into 3 road sections.

1. M4 Junction 7 Spur to the A355 Farnham Road
2. A355 Farnham Road to A412 Uxbridge Road
3. A412 Uxbridge Road to the M4 Junction 5

METHODOLOGY

The collision criteria used were as follows:

- Collisions over a 5 year period (2016-2020)
- A collision match distance of 50 metres

All tools used in this report have been provided by the Agilysis Analytics department.

[^0]
SUMMARY

Looking at the route, all three sections followed a similar pattern. Collisions involving cars were highest, most likely to involve two vehicles and result in a single casualty.

The section between the A355 and A412 resulted in the most collisions, this section does have the bus/rail transport interchanges and the main retail centre, so is likely to have increased traffic, although the ratio of Collision to Vehicles to Casualties remained largely the same in each section.

Weather was not a significant factor, with most collisions occurring in 'fine weather', on 'dry roads' and in slightly more in 'daylight'.

A collision is more likely to occur at a junction and involve a male driver between 26 and 55 , with 2635 being highest and when combined, either commuting to work or travelling as part of work

A collision is more like to result in a recording of a 'slight' injury with KSI more often being attributed to a VRU driver, either pedal cyclist or motor cyclist in road sections 1 and 3. There were significantly more pedestrian KSI's in section 2 between the A355 and A412. As mentioned above, this section does have the bus/rail transport interchanges and the main retail centre, with the A4 running between the two.

Pedestrian casualties were more likely to be 'slight' and injured at a crossing, especially in the act of crossing the road.

Of all recorded collisions the overriding factor was 'failing to look properly' or 'failing to judge the other persons path or speed', whether attributed to a driver or a pedestrian. Often drivers were 'careless, reckless or in a hurry' and 'Disobeying an automatic traffic signal'.

RESULTS
Section One - M4 Junction 7 Spur Roundabout to A355 Farnham Road.

Section One runs from the Entry/Exit of the M4 Junction 7 Spur roundabout to the junction with the A355 Farnham Road at The Three Tuns.

Figure 1 - Map of Section 1: M4 Junction 7 Spur Roundabout to A355 Farnham Road.

Section One is approximately 3.2 km in length with a speed limit of 40 mph changing to 30 mph approximately 530 m West of the junction with the A355.

There were a total of $\mathbf{9 3}$ crashes, involving $\mathbf{1 7 6}$ vehicles, resulting in $\mathbf{1 2 2}$ casualties.
Looking at the collisions spatially, 51 occurred between the M4 junction roundabout and the Dover Road/Chippenham Lane crossroads.

Figure 2 - Map of part of Section 1: M4 Junction 7 Spur Roundabout to Dover Road/Chippenham Lane crossroads.

With only 13 occurring between the Dover Road/Chippenham Lane crossroads and the start of the 30 mph limit East of Twinches Lane, 7 of these around the junction of Leigh Rd.

Figure 3 - Map of part of Section 1, Dover Road/Chippenham Lane crossroads to start of 30mph limit (Twinches Lane)

There were 29 recorded between Twinches Lane and the A355 Farnham Road junction, with 9 within 50m of the A355 junction.

Figure 4- Map of part of Section 1, Start of 30mph limit (Twinches Lane) to A355 Farnham Road junction

Crashes

Of the $\mathbf{9 3}$ crashes between M4 Junction 7 Spur Roundabout and the junction with the A355 Farnham Road, $\mathbf{8 0}$ were recorded as slight, $\mathbf{1 3}$ serious and no fatalities.

Slight	80
Serious	13
Fatal	0

Figure 5 - Percentage of crashes by severity in section 1 2016 to 2020

Collisions dropped sharply from 29 to 18 between 2016 and 2017, this has slowed since then, with the percentage of KSI collisions dropping from $\mathbf{2 7 \%}$ to $\mathbf{1 3 \%}$ between 2016 and 2019. Collisions fell to 13 in 2020 with only one recorded as KSI.

Year	Fatal	Serious	KSI	Slight	Total
$\mathbf{2 0 1 6}$		8	$\mathbf{8}$	21	$\mathbf{2 9}$
2017				18	$\mathbf{1 8}$
2018		2	$\mathbf{2}$	16	$\mathbf{1 8}$
2019		2	$\mathbf{2}$	13	$\mathbf{1 5}$
2020	1	$\mathbf{1}$	12	13	

Table 2 - Collisions in section 1 by year and severity

Figure 6 - Collisions in section 1 by year and severity
Collisions involving 2 Vehicles were highest, at $\mathbf{6 4}$ (69\%) followed by $\mathbf{2 1}$ single vehicle collisions (22\%). Collisions involving $\mathbf{3}$ or more vehicles accounting for $\mathbf{8 \%}$ of all recorded collisions.

Number of Vehicles	Fatal	Serious		KSI	Slight	Total
$\mathbf{1}$		4	$\mathbf{4}$	17	$\mathbf{2 1}$	
$\mathbf{2}$		8	$\mathbf{8}$	56	$\mathbf{6 4}$	
$\mathbf{3}$		1	$\mathbf{1}$	5	$\mathbf{6}$	
$\mathbf{4}$				1	$\mathbf{1}$	
$\mathbf{5 +}$				1	$\mathbf{1}$	

Table 3 - Collisions in section 12016 to 2020 by number of vehicles involved
There were $\mathbf{7 0} \mathbf{(7 5 \%)}$ collisions with a single casualty, of these $\mathbf{8}$ were KSI, but none were fatal.

| Number of Casualties | Fatal | Serious | KSI | Slight | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | | 8 | $\mathbf{8}$ | 62 | $\mathbf{7 0}$ |
| $\mathbf{2}$ | | 5 | $\mathbf{5}$ | 13 | $\mathbf{1 8}$ |
| $\mathbf{3}$ | | | | 4 | $\mathbf{4}$ |
| $\mathbf{4}$ | | | | 1 | $\mathbf{1}$ |
| $\mathbf{5 +}$ | | | | | |

Table 4 - Collisions in section 12016 to 2020 by number of resulting casualties
The majority of collisions, 81 (87%) occurred in fine weather, with the remaining 12 occurring in the rain. $\mathbf{7 1} \mathbf{(7 6 \%)}$ collisions occurred when the roads were dry and the remaining $\mathbf{2 2}$ on damp or wet roads.

Figure 7- Percentage of collisions in section 12016 to 2020 by weather conditions

- Dry
- Wet or Damp

Figure 8 - Percentage of collisions in section 12016 to 2020 by road surface conditions

Of the $\mathbf{1 3} \mathrm{KSI}$ collisions, $\mathbf{1 1}$ were recorded as fine weather with only $\mathbf{2}$ in the rain, with $\mathbf{1 0}$ of the KSI collisions occurring on dry roads.

59 (64\%) collisions occurred in Daylight, of the 32 in Darkness 1 was recorded as 'Darkness (no lighting)' and 1 'Darkness (lighting unknown).

- Daylight
- Darkness (lights lit)
- Darkness (no lighting)
- Darkness (lighting unknown)

Figure 9 - Percentage of collisions in section 12016 to 2020 by lighting conditions

Of all collisions, 57 (61\%) occurred at junctions, 29 (31\%) at a T-Junction and 28 ($\mathbf{3 0 \%}$) at crossroads. 16 (17\%) did not occur at a junction and 15 (16\%) occurred at a private drive.

Figure 10 - Collisions in section 12016 to 2020 by junction detail
Of the 13 KSI collisions, 6 occurred at a T-Junction, $\mathbf{3}$ at a crossroads and $\mathbf{3}$ not at a junction. $\mathbf{3 4}$ (37\%) of collisions were recorded at a signal crossing, the majority, $\mathbf{5 4} \mathbf{(5 8 \%)}$) did not occur at a crossing.

Figure 11 - Percentage of collisions in section 12016 to 2020 by pedestrian crossing
The highest number of VRU Casualties were Pedestrians, 19, of those, $\mathbf{4} \mathbf{(2 1 \%)}$ were KSI. This was followed by Pedal Cyclists 16, with 1 (6\%) KSI casualty. There were 12 Motorcycle casualties, of which, 5 (41\%) were KSI. There were 12 child casualties, with 1 (8\%) KSI.

Figure 12 - Collisions in section 12016 to 2020 involving Vulnerable Road Users (VRU) by VRU type and severity

The majority of collisions involved cars, 62, this included $\mathbf{7}$ (11\%) KSI collisions. There were 23 collisions involving a young driver, $\mathbf{4}$ (17\%) of these were KSI. Pedal Cyclists were involved in 16 collisions, with $\mathbf{1}$ (6\%) KSI casualty. Of the 13 collisions involving a motorcycle $\mathbf{6}$ (42\%) were KSI collisions

Figure 13 - Collisions in section 12016 to 2020 by vehicle involved and severity

Collisions tend to occur during the morning and evening peaks, Monday through Friday, although this shifts to earlier in the afternoon on Fridays.

	00:00	01:00	02:00	03:00	04:00	05:00	06:00	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
Monday									2					1	1	2		4	2	1	1			
Tuesday							2	1	1	1			1					4	2			1	1	
Wednesday								2	3	1	1	2	1		1		2	2	1	1	3	2		
Thursday							2		1					1	1			1		4				
Friday	1						1		2						4	3	1			1				1
Saturday					1				1			2		1				1		1		1	1	
Sunday	1		1								1	1		1	1	2		1	1					

Figure 14 - Number of collisions in section 12016 to 202 by day of week and hour of day

Vehicles

There were 176 vehicles involved in collisions between M4 Junction 7 Spur Roundabout and the junction with the A355 Farnham Road.

Of these 128 (72\%) were cars, with next highest, Pedal Cycles 17 (10\%) and Goods Vehicles (under 3.5 tonnes) 11 (6\%).

Combined, Motorcycles accounted for 11 (6\%) of vehicles involved, but these were mainly below $125 c c$, with 5 or above 500cc with 5.

Figure 15 - Number of vehicles involved in section 12016 to 2020 by type
The majority of drivers were male 124 (70\%), with 46 (26\%) female.

Figure 16 - Percentage breakdown of sex of driver in section 1

When looking at Driver Age, the highest numbers were for drivers from 26 to 55, with 38 (22\%) 26 \& 35,36 (20\%), 36 \& 45 and 26 (15\%) 46 \& 55, with drivers 56 to 5516 (9\%). Younger drivers 21 to 25 accounted for 19 (11\%) and drivers 16-20 14 (8\%) of all drivers.

Figure 17 - Driver numbers in section 12016 to 2020 by age range

Of recorded Journey purpose, 57 (32\%) were recorded as other, a further 55 (31\%) were unknown, 33 (19\%) were recorded as part of work and 29 (16\%) commuting to/from work. With only 2 recorded as relating to the school run.

Figure 18 - Percentage of vehicles in section 12016 to 2020 by journey purpose

Casualties

Of the 122 recorded casualties between M4 Junction 7 Spur Roundabout and the junction with the A355 Farnham Road., 75 (61\%) were male and 47 (39\%) were female.

Figure 19 - Percentage of casualties in section 12016 to 2020 by sex

109 (89%) casualties were recorded as slight and 13 (11\%) serious, with no fatalities.

Figure 20 - Percentage of casualties in section 12016 to 2020 by severity

76 (62\%) of casualties were the driver and 26 (21\%) a passenger, with 20 (17\%) recorded as a pedestrian. Of the $\mathbf{7 6}$ Driver casualties, $\mathbf{2 8}$ (37\%) were a VRU casualty (16 Pedal Cyclist and $\mathbf{1 2}$ Motorcyclist).

Figure 21 - Percentage of casualties in section 12016 to 2020 by class
When looking at age, casualties largely follow the vehicle involved with the majority of casualties between 26 and 55 years of age. $\mathbf{3 1}$ (25\%) were 26 to 35,24 (20\%) 36 to 45 and $\mathbf{1 7 (2 0 \%)} 46$ to 55. This was followed by younger drivers, with 16 (13\%) 16 to 20 and 12 (10\%) 21 to 25.

Figure 22 - Breakdown of casualties in section 1 by age band

Of the 20 pedestrian casualties, those at a crossing were the most common casualty with $\mathbf{1 6}$ (80%).

Figure 23 - Percentage of pedestrian casualties in section 12016 to 2020 by location
12 (60\%) pedestrians were in the act of crossing the road.

- Crossing
- Unknown or other

Figure 24 - Percentage of pedestrian casualties in section 12016 to 2020 by movement

Contributary Factors

The most common Contributary Factor (CF) for drivers was '405 - Driver Failed to Look Properly' of which 44 were recorded, 30 of these were recorded as Contributary Factor 1.

The second most common CF was '406 - Failed to Judge Other Persons Path or Speed' with 20 recorded, with a similar number 19 recording of ' 602 - Careless, Reckless or in a Hurry'. '306 Exceeding Speed Limit was recorded 6 times

Of CFs attributed to Pedestrians, the most common were recorded as '802 - Failed to Look Properly' with 10, and '808-Careless, Reckless or in a Hurry' with 5.

Figure 25 - Breakdown of collisions in section 12016 to 2020 by Contributary Factor

Section Two runs from the A355 at The Three Tuns to the roundabout with the A412 Uxbridge Road.

Figure 26 - Map of Section 2: A355 at The Three Tuns to the roundabout with the A412 Uxbridge Road.
Section Two is approximately 2.25 km in length with a speed limit of 30 mph for the entire length of the section.

There were a total of 121 crashes, involving 221 vehicles, resulting in 152 casualties.

Looking at the collisions spatially, Collisions tend to be clustered around junctions. There were 7 collisions within 50 m of the Junction of the A355 Farnham Road and a cluster of 11 collisions around the junction with Stoke Poges Lane

There is a cluster of $\mathbf{1 6}$ collisions within 50 m of the junction with the A332 William Street/B416 Stoke Road and a cluster of $\mathbf{8}$ collisions around the junction for the Slough Tesco Extra store.

Figure 28 - Map of part of Section 2: Slough Town Centre/Transport Interchange

There are clusters of $\mathbf{1 0}$ collisions at the Wexham Road Junction and 13 at the roundabout with the A412 Uxbridge Road.

Figure 29 - Map of part of Section 2: Wexham Road Junction to A412 Uxbridge Road.

Of the 121 crashes between the junction with the A355 Farnham Road and the A412 Uxbridge Road roundabout junction, 104 were recorded as slight, 16 serious and 1 fatal.

By Severity	
	Slight
Serious	104
Fatal	16
	1

Table 5 - Crashes by Severity in Section 22016 to 2020

Figure 30 - Percentage of crashes by severity in section 22016 to 2020

Collisions rose sharply from 22 to $\mathbf{3 5}$ between 2016 and 2017, returning to a similar level as 2016 from 2018 onwards, dropping only slightly in 2019 and rising in 2020 to 23.

Although the percentage of KSI collisions dropped comparatively from 9\% to 6\% between 2016 and 2017, they have increased and since then with $\mathbf{2 2 \%}$ of collisions recorded as KSI in 2020.

There was 1 fatality recorded in 2016

Year	Fatal	Serious	KSI	Slight	Total
2016	1	1	2	20	22
2017		2	2	33	35
2018		4	4	17	21
2019		4	4	16	20
2020		5	5	18	23

[^1]

Figure 31 - Collisions in section 2 by year and severity
Collisions involving 2 Vehicles were highest, at $\mathbf{8 4}$ (69\%) followed by $\mathbf{2 5}$ single vehicle collisions (21\%). Collisions involving 3 or more vehicles accounting for $\mathbf{1 0 \%}$ of all recorded collisions.

Number of Vehicles	Fatal	Serious		KSI	Slight	Total
$\mathbf{1}$	1	$\mathbf{7}$	$\mathbf{8}$	17	$\mathbf{2 5}$	
$\mathbf{2}$		6	$\mathbf{6}$	78	$\mathbf{8 4}$	
$\mathbf{3}$		2	$\mathbf{2}$	6	$\mathbf{8}$	
$\mathbf{4}$		1	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
$\mathbf{5 +}$				1	$\mathbf{1}$	

Table 7 - Collisions 2016 to 2020 in section 2 by number of vehicles involved

There were 96 collisions with a single casualty, of these 16 were KSI, and one was fatal.

| Number of Casualties | Fatal | Serious | KSI | Slight | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 15 | $\mathbf{1 6}$ | 80 | $\mathbf{9 6}$ |
| $\mathbf{2}$ | | | | 21 | $\mathbf{2 1}$ |
| $\mathbf{3}$ | | 1 | $\mathbf{1}$ | 1 | $\mathbf{2}$ |
| $\mathbf{4}$ | | | | 2 | $\mathbf{2}$ |
| $\mathbf{5 +}$ | | | | | |

Table 8 - Collisions 2016 to 2020 in section 2 by number of resulting casualties

Figure 32 - Percentage of collisions 2016 to 2020 in section 2 by weather conditions

Figure 33 - Percentage of collisions in section 22016 to 2020 by road surface conditions
The majority of collisions, 106 ($\mathbf{8 8 \%}$) occurred in fine weather, with the remaining 15 occurring in the rain. $94(\mathbf{7 8 \%})$ collisions occurred when the roads were dry and of the remaining $\mathbf{2 7}, \mathbf{2 6}$ occurred on damp or wet roads and 1 in Snow, Frost or Ice.

Of the 17 KSI collisions, 15 were recorded as fine weather, including the $\mathbf{1}$ fatality, with only $\mathbf{2}$ in the rain, with $\mathbf{1 5}$ of the KSI collisions occurring on dry roads and $\mathbf{2}$ on Wet or Damp roads.

78 (64\%) collisions occurred in Daylight, of the 43 in Darkness only 1 was recorded as 'Darkness (no lighting)'.

- Daylight
- Darkness (lights lit)
- Darkness (no lighting)
- Darkness (lighting unknown)

Figure 34 - Percentage of collisions in section 22016 to 2020 by lighting conditions
Of all collisions, 83 (69\%) occurred at junctions, 24 (20\%) at a T-Junction, 39 ($\mathbf{3 2 \%}$) at crossroads and $\mathbf{2 0 (1 7 \%)}$ at a roundabout. $\mathbf{2 7}$ (22\%) did not occur at a junction, $\mathbf{8 (7 \%)}$ occurred at a private drive and 1 on a slip road.

Figure 35 - Collisions in section 22016 to 2020 by junction detail
Of the 17 KSI collisions, $\mathbf{7}$ were recorded at a crossroads, $\mathbf{6}$ not at a junction and $\mathbf{2}$ were recorded at a T-Junction. $\mathbf{6 0} \mathbf{(5 0 \%)}$ of collisions were recorded at a signal crossing, $\mathbf{5 5 (4 5 \%)}$ did not occur at a crossing and 4 (3\%) were recorded as at a Zebra crossing.

- Central refuge only
- Footbridge or subway
- No crossing
- Signal crossing
- Zebra crossing

Figure 36 - Percentage of collisions in section 22016 to 2020 by pedestrian crossing
The highest number of VRU Casualties were Pedestrians, 24, of those, 9 (38\%) were KSI, including 1 fatality. This was followed by Pedal Cyclists 18, with 2 (11\%) KSI casualties. There were 10 Motorcycle casualties, of which, $\mathbf{4}(\mathbf{4 0 \%})$ were KSI. There were 11 child casualties, with no recorded KSI's.

Figure 37 - Collisions in section 22016 to 2020 involving Vulnerable Road Users (VRU) by VRU type and severity
The majority of collisions involved cars, $\mathbf{7 7}$, this included $\mathbf{8}$ (11\%) KSI collisions. There were 17 collisions involving a young driver, none of these were KSI.

Pedal Cyclists were involved in 18 collisions, with 2 (11\%) KSI casualties. Of the $\mathbf{1 0}$ collisions involving a motorcycle 4 (40\%) were KSI collisions.

There were 10 collision involving Goods Vehicles, $\mathbf{3}$ (30\%) were KSI, including 1 fatality

Figure 38 - Collisions in section 22016 to 2020 by vehicle involved and severity

Collisions tend to occur during the morning and evening peaks. There are increases around 'lunch time', particularly on a Friday and early on Sunday afternoon and late in the evenings around 21:00.

	00:00	01:00	02:00	03:00	04:00	05:00	06:00	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
Monday	1							3		2	1	1	1	2			4	1	1	2	2	3		
Tuesday	1								1	2			2		1			1		1	1	2		
Wednesday									1	2		1	1			2			1			1	1	
Thursday								2	2	2	1		3		1	2	2	2	2					2
Friday							1	1	4	2			2	4		1	1	2	2	2	1	1		
Saturday		1					1			2	1		1				1	1	1	1		2		
Sunday	1	1						2						3	3						1	2		

Vehicles

There were 221 vehicles involved in collisions between the junction with the A355 Farnham Road and the A412 Uxbridge Road roundabout junction.
Of these 161 (73\%) were cars, with next highest, Pedal Cycles 18 (8\%) and Goods Vehicles (under 3.5 tonnes) 14 (6\%).
Combined, Motorcycles accounted for 10 (5\%) of vehicles involved, distributed evenly between engine sizes, except 125-500cc, with 1.
There were $\mathbf{8}$ Taxis and $\mathbf{2}$ buses recorded as vehicle type.

Figure 40 - Number of vehicles involved in section 22016 to 2020 by type
The majority of drivers were male 150 (68\%), with 52 (24\%) female.

> ■ Male
> Female

Figure 41 - Percentage breakdown of sex of driver in section 2
When looking at Driver Age, the highest numbers were for drivers from 26 to 55, with 54 (24\%) 26 \& 35, 42 (19\%), 36 \& 45 and 32 (14\%) 46 \& 55, with drivers 56 to 6512 (5\%).

Younger drivers 21 to 25 accounted for 17 (8\%) and drivers 16-20 9 (4\%) of all drivers. There were 2 drivers recorded between 11 \& 15.

Figure 42 - Driver numbers in section 22016 to 2020 by age range
Of recorded Journey purpose, 51 (23\%) were recorded as other, 46 (21\%) were recorded as part of work and 19 (9%) commuting to/from work. With only 4 recorded as relating to the school run.

- Commuting to/from work
- Journey as part of work
- Taking pupil to/from school
- Pupil riding to/from school
- Other (2011 onwards)
- Unknown (2011 onwards)

Figure 43 - Percentage of vehicles in section 22016 to 2020 by journey purpose

Casualties

Of the 122 recorded casualties between the junction with the A355 Farnham Road and the A412 Uxbridge Road roundabout junction, 88 (58\%) were male and 64 (42\%) were female.

- Male
- Female

Figure 44 - Percentage of casualties in section 22016 to 2020 by sex
135 (89\%) casualties were recorded as slight and 16 (11\%) serious, with 1 fatality.

Figure 45 - Percentage of casualties in section 22016 to 2020 by severity

96 (63\%) of casualties were the driver and 31 (20\%) a passenger, with 25 (16\%) recorded as a Pedestrian. Of the 96 Driver casualties, 28 (29\%) were a VRU casualty ($\mathbf{1 8}$ Pedal Cyclist and 10 Motorcyclist).

Figure 46 - Percentage of casualties in section 22016 to 2020 by class
When looking at age, casualties largely follow the vehicle involved with the majority of casualties between 26 and 55 years of age. 49 (32\%) were 26 to 35,32 (21\%) 36 to 45 and 15 (10\%) 46 to 55. This was followed by younger drivers, with 13 (9\%) 21 to 25 and 13 (9\%) 16 to 20.

There were 8 (5\%) child casualties, 4 11-15, 4 6-10 and 3 0-5.

[^2]Of the $\mathbf{2 5}$ pedestrian casualties, those at a crossing were the most common casualty with $\mathbf{1 9}$ ($\mathbf{7 6 \%}$).

$$
\begin{aligned}
& \text { - In carriageway (crossing) } \\
& \text { - In carriageway (not crossing) } \\
& \text { On footway }
\end{aligned}
$$

Figure 48 - Percentage of pedestrian casualties in section 22016 to 2020 by location
17 (68\%) pedestrians were in the act of crossing the road.

- Crossing
- Stationary in carriageway
- Unknown or other

Figure 49 - Percentage of pedestrian casualties in section 22016 to 2020 by movement

Contributary Factors

The most common Contributary Factor (CF) for drivers was '405 - Driver Failed to Look Properly' of which 53 were recorded, 32 of these were recorded as Contributary Factor 1.
The second most common CF was '602-Careless, Reckless or in a Hurry' with 26 recorded, with a similar number 23 recording of ' 406 - Failed to Judge Other Persons Path or Speed'. '403 - Poor turn or manoeuvre' was recorded 11 times.
'301 - Disobeyed and Automatic Traffic Signal' was recorded 13 times. 5 of these were recorded as Contributary Factor 1 and ' 306 - Exceeding Speed Limit was recorded 7 times, with ' 308 - Following to Close' recorded 5 times

Of CFs attributed to Pedestrians, the most common were recorded as '802 - Failed to Look Properly' with 7, and ' 808 - Careless, Reckless or in a Hurry' with 6.

There were 3 instances of both ' 803 - Failed to judge vehicles path or speed' and ' 804 - Wrong use of pedestrian crossing facility'.

Figure 50 - Breakdown of collisions in section 22016 to 2020 by Contributary Factor

Section Three - A355 Uxbridge Road to M4 Junction 5 Roundabout.
Section Three runs from the roundabout with the A412 Uxbridge Road to the Entry/Exit of the roundabout of the M4 Junction 5.

Figure 51 - Map of Section 3: A412 Uxbridge Road to the Entry/Exit M4 Junction 5 roundabout
Section Three is approximately 3.2 km in length with a speed limit of 30 mph changing to 40 mph at Langley Fire Station.

There were a total of 88 crashes, involving 165 vehicles, resulting in 124 casualties.

Looking at the collisions spatially, there were $\mathbf{1 0}$ collisions within 50 m of the Junction of the A412 Uxbridge Road otherwise collisions are spread out along the road.

Figure 53 - Map of part of Section 2: Lynwood Road to Cedar Way

There is a cluster of 4 collisions around Lynwood Road including $\mathbf{1}$ fatality. There are clusters of 5 collisions around the junctions of Cedar Way and London Road accesses to the Castleview residential area, otherwise collisions tend to be distributed along the road.

There is a small cluster of Collisions at the junction of Tobermory Close and a large cluster of $\mathbf{1 5}$ collisions at the junction with Ditton Road / B470.Langley High Street, which includes 1 fatality.

Figure 54 - Map of part of Section 2: Ditton Park Road to M4 Junction 5 roundabout

Of the 88 crashes between the roundabout with the A412 Uxbridge Road to the Entry/Exit of the roundabout of the M4 Junction 5 ., 75 were recorded as slight, 11 serious and 2 fatal.

By Severity	
Slight	75
Serious	11
Fatal	2

Table 9 - Crashes by Severity in Section 32016 to 2020

Figure 55 - Percentage of crashes by severity in section 32016 to 2020
Collisions changed little from 22 to 23 between 2016 and 2017, with 4 KSI dropping to 17 in 2018 and 16 in 2019. Collisions fell further to 10 in 2020.

Between 2016 and 2017 18\% of collisions were KSI, dropping to 12% in 2019 and 10% in 2020 . There was 1 fatality in 2016 and 1 in 2018

| Year | Fatal | Serious | KSI | Slight | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 6}$ | 1 | 3 | $\mathbf{4}$ | 18 | $\mathbf{2 2}$ |
| 2017 | | 4 | $\mathbf{4}$ | 19 | $\mathbf{2 3}$ |
| 2018 | 1 | 1 | $\mathbf{2}$ | 15 | $\mathbf{1 7}$ |
| 2019 | | 2 | $\mathbf{2}$ | 14 | $\mathbf{1 6}$ |
| 2020 | | 1 | $\mathbf{1}$ | 9 | $\mathbf{1 0}$ |

Table 10 - Collisions in section 1 by year and severity

Figure 56 - Collisions in section 3 by year and severity

Collisions involving 2 Vehicles were highest, at $\mathbf{7 2}$ (82\%) followed by 9 single vehicle collisions (10\%). There were $\mathbf{7}$ collisions recorded involving $\mathbf{3}$ vehicles.

| Number of Vehicles | Fatal | Serious | KSI | Slight | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 1 | $\mathbf{2}$ | $\mathbf{7}$ | $\mathbf{9}$ |
| $\mathbf{2}$ | 1 | 10 | $\mathbf{1 1}$ | 61 | $\mathbf{7 2}$ |
| $\mathbf{3}$ | | | | 7 | $\mathbf{7}$ |
| $\mathbf{4}$ | | | | | |
| $\mathbf{5 +}$ | | | | | |

Table 11 - Collisions 2016 to 2020 by number of vehicles involved
There were 67 collisions with a single casualty (76%), of these 11 were KSI, and 1 was fatal.

| Number of Casualties | Fatal | Serious | KSI | Slight | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 10 | $\mathbf{1 1}$ | 56 | $\mathbf{6 7}$ |
| $\mathbf{2}$ | | 1 | $\mathbf{1}$ | 13 | $\mathbf{1 4}$ |
| $\mathbf{3}$ | 1 | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| $\mathbf{4}$ | | | | 3 | $\mathbf{3}$ |
| $\mathbf{5 +}$ | | | | 1 | $\mathbf{1}$ |

Table 12 - Collisions 2016 to 2020 by number of resulting casualties
The majority of collisions, 80 (88%) occurred in fine weather, of the remaining, 6 ($\mathbf{7 \%}$) occurred in the rain and 1 when it was Snowing.

64 ($\mathbf{7 3 \%}$) collisions occurred when the roads were dry and of the remaining $\mathbf{2 4}, \mathbf{2 2}$ ($\mathbf{2 5 \%}$) occurred on damp or wet roads and $\mathbf{2}$ in Snow, Frost or Ice.

Figure 57 - Percentage of collisions 2016 to 2020 by weather conditions

Figure 58 - Percentage of collisions in section 32016 to 2020 by road surface conditions

Of the 13 KSI collisions, 11 were recorded as fine weather with only $\mathbf{2}$ in the rain, with $\mathbf{8}$ of the KSI collisions occurring on dry roads. $\mathbf{6 6 (7 5 \%)}$ collisions occurred in Daylight, and of the $\mathbf{2 2}$ in Darkness, all were recorded as 'Darkness (lights lit)'.

- Daylight
- Darkness (lights lit)

Figure 59 - Percentage of collisions in section 32016 to 2020 by lighting conditions

Of all collisions, 63 (72\%) occurred at junctions, 37 (42\%) at a T-Junction, 16 (18\%) at crossroads and $10(11 \%)$ at a roundabout. $16(18 \%)$ did not occur at a junction, $9(10 \%)$ occurred at a private.

Figure 60 - Collisions in section 32016 to 2020 by junction detail

31 (35\%) of collisions were recorded at a signal crossing, the majority, $\mathbf{5 7}$ (65\%) did not occur at a crossing.

Figure 61 - Percentage of collisions in section 32016 to 2020 by pedestrian crossing
The highest number of VRU Casualties were Pedal Cyclists, 21, of those, $\mathbf{2} \mathbf{(1 0 \%)}$ were KSI. This was followed by Motorcycle 11, with 5 (45\%) KSI casualty. There were 8 Pedestrians casualties, of which, 2 (25\%) were KSI. There were 11 child casualties, with no recorded KSI.

Figure 62 - Collisions in section 32016 to 2020 involving Vulnerable Road Users (VRU) by VRU type and severity

The highest number of collisions involved cars, 46, this included 4 (9\%) KSI collisions, with 1 fatality. There were 15 collisions involving a young driver, 1 (7\%) of these was a KSI.
Pedal Cyclists were involved in 21 collisions, with $\mathbf{2}$ (10\%) KSI casualties. Of the $\mathbf{1 1}$ collisions involving a motorcycle 5 (45\%) were KSI collisions.

There were $\mathbf{4}$ collision involving Goods Vehicles, there was $\mathbf{1}$ ($\mathbf{2 5 \%}$) KSI, which resulted in a fatality

Figure 63 - Collisions in section 32016 to 2020 by vehicle involved and severity
Collisions tend to occur during the morning and the evening peaks, Monday to Friday. At weekends there is an increase around Noon and early evening on Saturdays.

| | $00: 00$ | $01: 00$ | $02: 00$ | $03: 00$ | $04: 00$ | $05: 00$ | $06: 00$ | $07: 00$ | $08: 00$ | $09: 00$ | $10: 00$ | $11: 00$ | $12: 00$ | $13: 00$ | $14: 00$ | $15: 00$ | $16: 00$ | $17: 00$ | $18: 00$ | $19: 00$ | $20: 00$ | $21: 00$ | $22: 00$ | $23: 00$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| Monday | | | | | | | | 1 | 1 | 1 | | | 1 | 1 | | 1 | 1 | 1 | | 4 | | 2 | | 1 | | |
| Tuesday | | | | | | | | 1 | | 1 | | | 1 | 1 | 1 | | | 2 | 4 | 1 | 1 | | | | 2 | |
| Wednesday | | | | | | | | 1 | 1 | | | 1 | | 1 | 1 | | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 2 | 1 | |
| Thursday | | | | | | | | 2 | 1 | | | | | | | | 3 | 2 | 1 | 2 | | | | | | |
| Friday | 1 | | | | | | | 2 | 2 | | | | 1 | 1 | | 2 | | 2 | | 1 | 1 | 1 | | | | |
| Saturday | | | | | | | | | | | | 2 | 1 | 2 | | | 2 | 1 | 2 | 2 | 1 | | | 1 | | |
| Sunday | | | | | | | | | | | | | 2 | 2 | | | 1 | | 1 | | | | | | | |

Figure 64 - Number of collisions in section 32016 to 202 by day of week and hour of day

Vehicles

There were 165 vehicles involved in collisions between the roundabout with the A412 Uxbridge Road to the Entry/Exit of the roundabout of the M4 Junction 5.

Of these 114 (69\%) were cars, with next highest, Pedal Cycles 21 (13\%) and Goods Vehicles (under 3.5 tonnes) 9 (5\%).

Combined, Motorcycles accounted for 11 (7\%) of vehicles involved, $\mathbf{3}$ were '50cc and Under', $\mathbf{3}$ were '50cc to $125 c c$ ' and 5 were 'over 500cc'.

There were $\mathbf{4}$ Taxis and $\mathbf{3}$ buses recorded as vehicle type.

Figure 65 - Number of vehicles involved in section 32016 to 2020 by type
The majority of drivers were male 111 (67\%), with 38 (23\%) female.

[^3]- Female

Figure 66 - Percentage breakdown of sex of driver in section 3
When looking at Driver Age, the highest numbers were for drivers from 26 to 45, with 36 (29\%) 26 \& 35 and $\mathbf{2 6}$ (21\%), 36 \& 45 . Followed by drivers 46 \& 55 and 56 to 55 with $\mathbf{2 0}$ (16\%) each.

Younger drivers 21 to 25 accounted for 18 (15\%) and drivers 16-20 6 (5\%) of all drivers. There were 3 drivers recorded between 11 \& 15.

Figure 67 - Driver numbers in section 32016 to 2020 by age range
Of recorded Journey purpose, 45 (27\%) were recorded as other, 27 ($\mathbf{1 6 \%}$) were recorded as commuting to/from work and $\mathbf{2 1}$ (13\%) as part of work. With only 2 recorded as relating to the school run.

[^4]
Casualties

Of the 124 recorded casualties, 80 (65\%) were male and 44 (35\%) were female.

Figure 69 - Percentage of casualties in section 32016 to 2020 by sex
109 (88\%) casualties were recorded as slight, 13 (11\%) as serious, and 2 fatalities.

Figure 70 - Percentage of casualties in section 32016 to 2020 by severity
83 (67\%) of casualties were the driver and 31 (25\%) a passenger, with $10(8 \%)$ recorded as a pedestrian. Of the 83 Driver casualties, 31 (37\%) were a VRU casualty ($\mathbf{2 1}$ Pedal Cyclist and 11 Motorcyclist).

- Driver
- Passenger
- Pedestrian

Figure 71 - Percentage of casualties in section 32016 to 2020 by class

When looking at age, casualties largely follow the vehicle involved with the majority of casualties between 26 and 45 years of age. 27 (22\%) were 26 to 35 , 18 (15%) 36 to 45 . Followed by those 46-55 and 56-65, both with 16 (13\%) 46 to 55 . This was followed by younger drivers, with 13 (10\%) 21 to 25 and 11 (9\%) 16 to 20.

There were 13 (10\%) child casualties, $\mathbf{7} 11-15,36-10$ and $30-5$

Figure 72 - Breakdown of casualties in section 3 by age band

Of the $\mathbf{1 0}$ pedestrian casualties, all were recorded as being at a crossing.

Figure 73 - Percentage of pedestrian casualties in section 32016 to 2020 by location
$\mathbf{8}(\mathbf{8 0 \%})$ pedestrians were in the act of crossing the road.

- Crossing

- Unknown or other

Figure 74 - Percentage of pedestrian casualties in section 32016 to 2020 by movement

Contributary Factors

The most common Contributary Factor (CF) for drivers was '405 - Driver Failed to Look Properly' of which $\mathbf{4 2}$ were recorded, $\mathbf{2 0}$ of these were recorded as Contributary Factor 1.

The second most common CF was '406 - Failed to Judge Other Persons Path or Speed' with 15 recorded, with a similar number 14 recording of '602 - Careless, Reckless or in a Hurry'. '301 Disobeyed automatic Traffic signal' was recorded 13 times. ' 706 - Dazzling Sun' was recorded 5 times.

Of CFs attributed to Pedestrians, the most common were recorded as '803 - Failed to judge vehicles path or speed' with 7, and '802 - Failed to Look Properly' with 5.

Figure 75 - Breakdown of collisions in section 32016 to 2020 by Contributary Factor

ROAD DANGER ASSESSMENT - IRAP APPROACH

iRAP has developed five globally-consistent protocols to assess and improve the safety of roads by building on the work of Road Assessment Programmes (RAP) in high-income countries. This is a wellrecognised and highly regarded process for assessing roads risk, and helping to identify which improvements will achieve the highest improvements to safety given a certain budget.

The iRAP Protocols:

1. Crash Risk Mapping uses detailed crash data to illustrate the distribution of recorded fatalities and serious injuries on a road network.
2. Star Ratings provide a simple and objective measure of the level of safety provided by a road's design.
3. Fatality Estimation Mapping illustrates the distribution of the expected number of fatalities and serious injuries across a road network.
4. Safer Road Investment Plans (SRIP) draw on approximately 90 proven road improvement options to generate affordable and economically sound infrastructure options for saving lives.
5. Performance Tracking enables the use of Star Ratings and Crash Risk Mapping to track road safety performance and establish policy positions

Figure 76 - iRAP Process
Road attribute coding is the heart of an iRAP project. The purpose of road attribute coding is to use georeferenced images collected during a survey or road designs to record road attributes for each 100 m segment of road. This coding data is then combined with other supporting data and uploaded in ViDA to produce Star Ratings, Safer Roads Investment Plans and, ultimately promote the implementation of road safety countermeasures that can save lives. This manual describes the coding process and defines the road attributes that must be recorded. Throughout the manual, the following symbols are used to highlight key issues or provide additional information.

PROCESS

The original data provided in the bid to the DfT is now out of date with more current data from STATS19 and know changes to the A4 such of the use of the bus lanes by cyclists and the likelihood of degradation to the road surface, or repairs to areas which previously would have been flagged.

New data needed to be collected for the IRAP process, which meant recording a new video with integrated GPS data along this stretch of the A4. The video was recorded on $23{ }^{\text {rd }}$ August 2021 between 1 pm and 3 pm and was collected by attaching a portable camera to the front of a car which would drive in both directions along the full stretch of the A4.

Figure 77-Imagel from video footage of the A4
The video recording was then provided to a third party organisation FPZ to code this data following the IRAP process. Still images are extracted from the video at 100 m segments for the entire length of the road, and are repeated where the road has segregation between the lanes. Each of these images is then coded according to the IRAP coding manual which includes 90 different criteria for each segment. Recording things such as road condition, pavement width and adjoining land use (i.e.: residential, business, undeveloped) to name but a few.

The final data required at this stage in the process is to include vehicle speed and flow data. Agilysis has access to this data from Ordnance Survey and is already processed and included in some of our tools such as the Active Streets Assessment tool. This data is extracted for this length of road at each of the 100 m segments and added to the coding file for each direction of travel. Note that the observed speeds of vehicles are banded into 5 mph figures. However overall compliance along the A4 is within the existing speed limits.

Following the initial coding process by FPZ, it is then submitted to another organisation for quality assurance and a second opinion. For this project the QA process was provided by the Road Safety Foundation. They raised a couple of the queries on one of two of the segments, and these were amended in the final coding file.

Once the coding file is completed, it is then uploaded into the VIDA software for further calibration and processing in order for it to generate a risk profile. A copy of the raw coding can be found in appendix A.

CALLIBRATION

The calibration is the next step in providing context to the coding data so that it can produce some meaningful outputs. This is where the casualty information is added, including the costs associated with KSI's and countermeasures.

The casualty data was discussed earlier in this report, and advice was sought from the Road Safety Foundation as how best to accurately represent this information within the tool. The table below
summarises how casualties have been split between each of the road user groups during the calibration process.

User Group	Vehicle Occupant	Motorcyclist	Pedestrian	Bicyclist
Percentage of total KSI's	35%	5%	25%	35%

A further figure for the fatality estimation needs to be provided. Under advisement from RSF this was set at 3.53 in line with National figures given that there were 69 reported KSIs, and an under-reporting figure of 1. This calculates an estimated number of annual fatalities on the network of 0.706.

The iRAP research paper "the true cost of roads crashes" provides an estimation for value of life as determined by the Gross Domestic Product per capita of any given country, followed by a multiplier. The figure for value of life in the UK is $£ 1,926,380$ with a separate multiplier of 0.11 of this figure for serious injuries, giving a figure of $£ 211,901.80$. This figures are crucial in order to calculate the cost benefit ratio of any given scheme.

The final data included in the calibration is the costs associated with each of the different types of countermeasure. This includes different costs depending on whether the road is urban or rural, and whether the flow of traffic is low, medium, or high. It may well be that these costs increase or decrease on a local level or by service provider, however they are a good indicator as to the overall costs of any given scheme and what CBR it will deliver. A full list of countermeasures and the figures associated with them can be found in appendix b.

STAR RATINGS

iRAP Star Ratings are an objective measure of the likelihood of a road crash occurring and the severity of the crash outcome. Star Ratings are produced by identifying and recording the road attributes which influence the most common and severe types of crashes, based on scientific evidence-based research. In this way, the level of risk to an individual road user on a particular road section or network can be defined without the need for detailed crash data. Research shows that a person's risk of death or serious injury is highest on a 1-Star road and lowest on a 5-Star road. Star Ratings are produced for vehicle occupants, motorcyclists, pedestrians and bicyclists.

A Star Rating Score (SRS) is calculated for each 100 m segment of road for vehicles occupants, motorcyclists, pedestrians and bicyclists. The SRS—that is, the relative risk of death and serious injury for an individual road user-is calculated using the following equation:

	likelihood		
crash type score	severity		
operating speed			
external flow influence			

Motorised road user scores (vehicle occupants and motorcyclists) are based on head-on, run-off road and intersection crash types. Pedestrian scores are based on walking along- and across-the-road crash types. Bicyclist scores are based on riding along-the-road and intersections crash types. Risk factors
are associated with road attributes, which are recorded during the survey and coding part of the assessment, for different crash types.

Below are the star ratings split by different road user groups for the route. These are an assessment of the A4 as it is today.

SUMMARY

Figure 78 - Star Rating breakdown by road user group for entire length of A4

Vehicle users

Current star rating assessment map:

Figure 79 - Current Star Rating profile for Vehicle users

Star Rating	Percentage of Length of route
1 Star	-

2 Star	16%
3 Star	76%
4 Star	8%
5 Star	-

Motorcycles

Current star rating assessment map:

Figure 80 - Current Star Rating profile for Motorcycle users

Star Rating	Percentage of Length of route
1 Star	20%
2 Star	-
3 Star	72%
4 Star	8%
5 Star	-

Bicyclists

Current star rating assessment map:

[^5]| Star Rating | Percentage of Length of route |
| :--- | :--- |
| 1 Star | |
| 2 Star | 12% |
| 3 Star | 8% |
| 4 Star | 8% |
| 5 Star | 72% |

Pedestrians
Current star rating assessment map:

Figure 82 - Current Star Rating profile for Pedestrians

Star Rating	Percentage of Length of route
1 Star	-
2 Star	36%
3 Star	21%
4 Star	8%
5 Star	35%

SAFER ROADS INVESTMENT PLAN

An Investment Plan is a prioritised list of countermeasures (safety treatments) that can cost-effectively improve Star Ratings and reduce infrastructure-related risk. More than 90 road improvement options can be analysed by the iRAP model to generate affordable and economically sound investment that improve a road's Star Ratings and, when implemented, can save lives. Investment Plans are based on an economic analysis of a range of countermeasures, which is undertaken by comparing the cost of implementing the countermeasure with the reduction in crash costs that would result from its implementation. They contain extensive planning and engineering information such as road attribute records, countermeasure proposals and economic assessments for 100 metre segments of a road network.

Estimation of fatalities and serious injuries are used in Investment Plans to assess the benefits and costs of implementing infrastructure safety countermeasures on a road. FSI estimates are made for each 100 m segment of the existing road under existing conditions.

SPEED LIMIT REDUCTION

The original proposal stated that the ambition was to extend the 30 mph speed limit to the entire length of this route.

While this is not an option available through the VIDA software, a comparison set of coding has been created with the speed limits, and speed compliances altered to reflect these changes, while all other information has remained the same. It is from this that we are able to calculate the different in KSI estimation simply as a result of altering the speed limit and maintaining a compliance within 5 mph of the posted limit.

Without knowing the costs associated with a change to the speed limit, we are unable to calculate a cost benefit ratio, however we anticipate that that costs for simple changing the limit would be low. We have also assumed that in the absence of any additional speed enforcement to areas where there has a speed limit reduction, that compliance would be within 5 mph of the limit. Note that current compliance is within the existing speed limit of both the 30 mph and 40 mph sections.

A change in the speed limits where they are currently 40 mph to 30 mph would result in a $\mathbf{3 8} \mathbf{~ K S I ~ s a v i n g ~}$ over a period of 20 years. The table below shows the adjustments in the star ratings for each road user group simply by changing the speed limit.

Star Rating	Vehicle Before	Vehicle After	Motorcycle Before	Motorcycle After	Pedestrians Before	Pedestrians After	Bicyclists Before	Bicyclists After
1 Star	-	-	20%	-	-	-	-	-
2 Stars	16%	12%	-	20%	36%	8%	12%	-
3 Stars	76%	80%	72%	72%	21%	49%	8%	20%
4 Stars	8%	8%	8%	8%	8%	8%	8%	-
5 Stars	-		-	-	35%	35%	72%	80%

ADDITIONAL COUNTERMEASURES

Following the assumed change in speed limit, VIDA will suggest a list of countermeasures or safety treatments in its Safer Roads investment plan. The costs and BCR is reliant on the information input curing the calibration process, and are there to give an indication rather than an exact figure.

The investment plan will only identify countermeasures which deliver a cost benefit ratio of 2 or above. The table below outlines the suggested measures as well as the overall cost, KSI's saved and the CBR. The overall analysis period has been set to 20 years, and you will note that each countermeasure has a different lifespan. For example improving delineation will only have a life span of 5 years, and the output will recognise that this will need to be implemented 4 times across the 20 year analysis period.

Countermeasure	Length / Sites	FSIs saved	PV of safety benefit	Estimated Cost	Cost per FSI saved	Program BCR
Bicycle Lane (offroad)	0.30 km	2	£502,661	£55,355	£22,402	9
Bicycle Lane (onroad)	0.30 km	0.9	£179,745	£3,547	£4,014	51
Central hatching	2.90 km	3	£528,812	£38,605	£14,851	14
Centreline rumble strip / flexi-post	1.90 km	1	£226,393	£26,955	£24,221	8
Clear roadside hazards (bike lane)	0.90 km	2	£452,965	£182,515	£81,969	2
Clear roadside hazards - driver side	2.70 km	10	1,993,749	£513,677	£52,413	4
Clear roadside hazards - passenger side	1.50 km	5	1,083,246	£291,648	£54,771	4
Footpath provision driver side (>3m from road)	0.20 km	0.6	£116,395	£36,000	£62,919	3
Footpath provision driver side (adjacent to road)	0.50 km	0.8	£167,609	£76,939	£93,382	2
Footpath provision driver side (informal path >1m)	0.50 km	0.5	£102,585	£17,340	£34,387	6
Footpath provision passenger side (>3m from road)	0.20 km	0.6	£126,560	£36,000	£57,866	4
Parking improvements	0.40 km	0.2	£44,152	£5,532	£25,488	8
Pedestrian fencing	3.90 km	10	£ 2,129,899	£331,500	£31,662	6
Road surface rehabilitation	0.70 km	1	£292,887	£125,985	£87,505	2
Roadside barriers driver side	0.70 km	4	£816,362	£203,000	£50,586	4
Roadside barriers passenger side	0.70 km	3	£614,348	£203,000	£67,220	3
Side road signalised pedestrian crossing	2 sites	2	£409,968	£116,189	£57,654	4
Signalised crossing	20 sites	6	£1,229,591	£926,688	£153,316	1
Traffic calming	4.10 km	12	£2,339,683	£754,567	£65,608	3
Unsignalised raised crossing	14 sites	3	£650,738	£750,351	£234,571	1
		69	$\begin{gathered} £ \\ 14,008,349 \end{gathered}$	£ 4,695,393	£68,187	3

Figure 83 - Breakdown of FSI/KSI saved by each countermeasure suggested

Figure 84 - Breakdown of BCR by each countermeasure suggested

Note that the original coding was made for every 100 m section of the route, and therefore each countermeasure suggested will be limited by section. Therefore it may suggest that only 2 sections (200 m) may require one type of measure, whereas others may be suggested over longer or shorted lengths. Additionally the BCR is calculated if that countermeasure was implemented across all of the suggested sections, however it is likely that some single sections may carry a higher BCR or KSI saving than others.

Figure 85 - Example of detail surrounding single countermeasure at single 100 m location

To help interrogate this information by looking at individual sites for each countermeasure, we have put this data into an interactive dashboard which can be accessed here: Countermeasures Dashboard

Figure 86 - View from the countermeasures dashboard

A further point of consideration is that these countermeasures are not necessarily prescriptive but rather point to areas of concern. A prime example of this is 'traffic calming', which is something that would be largely unsuitable for the A4 however points to speed management being an area of interest at those defined locations.

Clearly the total estimated cost exceeds the programme budget and for some interventions the BCR value is low. BCRs also vary at different locations which is why we are recommending a consultation and review using the tool to finalise the proposals following an on-the-ground visit to sense check the proposals.

Once this exercise is complete a final plan will be drawn up and an addendum to this report will be produced.

REFERENCES

Anderson, E. (2018). Developing safe system road safety indicators for the UK. London: Parliamentary Advisory Council for Transport Safety.
 Cusuly
佂

 11 -$-$,

$-$

妾妾学㒵量
～～．

81 Side road $\mathfrak{\xi}$	intersectio	20	1378629	1531810	1684991	1792218	1991353	2190489	1	0	0
152 Side road $\leq i$	intersectio	20	42336	47040	51744	55037	61152	67267	1	0	0
153 Side road ${ }^{\text {i }}$	intersectio	10	29635	32928	36221	38526	42806	47087	1	0	0
163 Footpath Fi	per linear ,	20	279926	311028	342131	279926	311028	342131	1	0	0
164 Footpath Fi	per linear	10	16934	18816	20698	16934	18816	20698	1	0	0
171 Shoulder si	per linear	20	35562	39514	43465	35562	39514	43465	1	0	0
172 Shouldersi	per linear 1	20	70278	78086	85895	70278	78086	85895	1	0	0
173 Footpath Fi	per linear 1	20	147329	163699	180069	147329	163699	180069	1	0	0
174 Footpath Fi	per linear 1	20	180000	180000	180000	180000	180000	180000	1	0	0
177 Footpath Fi	per linear	20	279926	311028	342131	279926	311028	342131	1	0	0
178 Footpath Fi	per linear	10	16934	18816	20698	16934	18816	20698	1	0	0
182 Realignme i	lane km	20	70278	78086	85895	70278	78086	85895	1	0	0
186 Central $\mathrm{m} \in \mathrm{u}$	per km	20	169344	188160	206976	220147	244608	269069	1	0	0
187 Clear road: i	per km	20	169344	188160	206976	220147	244608	269069	1	0	0
188 Sideslope ii	per km	20	3446150	3829056	4211962	4479996	4977773	5475550	1	0	0
189 Roadside ki	per km	20	127008	141120	155232	165110	183456	201802	1	0	0
190 Wide centıu	per linear	20	5673	6303	6934	5673	6303	6934	1	0	0
191 School zoni	lane km	5	4234	4704	5174	5504	6115	6727	1	0	0
192 School zoni	unit	20	5080	5645	6209	4064	4516	4967	1	0	0
193 School zon m	unit	1	8467	9408	10349	11007	12230	13453	1	0	0
194 Unsignalisım	unit	10	29635	32928	36221	29635	32928	36221	1	0	0

agilysis.co.uk

27 Horsefair | Banbury | Oxfordshire | OX16 0AE
+441295731810 | info@agilysis.co.uk|www.agilysis.co.uk

An associated company of Road Safety Analysis

VAT Reg No: 260474119

[^0]: ${ }^{1}$ https://vida.irap.org/en-gb/home

[^1]: Table 6 - Collisions in section 2 by year and severity

[^2]: Figure 47 - Breakdown of casualties in section 2 by age band

[^3]: - Male

[^4]: Figure 68 - Percentage of vehicles in section 32016 to 2020 by journey purpose

[^5]: Figure 81 - Current Star Rating profile for Cyclists

